

The Latest Buzz in Diagnosis and Treatment of Cognitive Disorders Douglas W. Scharre, MD 1/21/23

Disclosures

Grants:

Avanir Biohaven BioVie Cassava **Cerevel** Therapeutics **Cognition Therapeutics** Eisai Genetech InSightec Janssen **Precision Medicine** Roche **UCB** Biopharma uniQure **Vivoryon Therapeutics**

Consultant:

Acadia Biogen Brain Test Eisai Medscape/WebMD Vascular Scientific

Learning Objectives

- Discuss diagnosis of common dementia conditions
- Learn about management approaches for the patient with cognitive disorders
- Review new treatments for Alzheimer's and Lewy body disorders

Mild Cognitive Impairment

Dementia

Prevalence of Dementia Syndromes

AD = Alzheimer's disease; DLB = Dementia with Lewy bodies; FCD = Focal cortical degeneration

Steps in Differential Diagnosis

- History
- Physical Exam
- Mental Status Exam
- Behavioral and Psychiatric symptoms
- Laboratory Evaluations
- Neuroimaging

History

Onset

- Clinical course
- Past medical history
- Psychiatric illness
- Medications
- Social and family history

Physical Exam

AD = Alzheimer' s disease; FTD = Frontotemporal dementia; NPH = Normal pressure hydrocephalus

Mental Status Exam

- Attention
- Language
- Memory
- Visuospatial skills
- Abstraction and calculations
- Judgment and executive fxn
- Personality and emotional state

Cortical vs Subcortical

Speech

- Cortical: Normal, Stereotypy
- Subcortical: Hypophonic, dysarthric

Language Cortical: Anomia, aphasia Subcortical: Normal

Cortical vs Subcortical

Memory

- Cortical: Amnesia
- Subcortical: Retrieval deficit (forgetful)

Cognition

- Cortical: Acalculia, impaired attention
- Subcortical: Slow processing speed, distraction

Cortical vs Subcortical Executive

- Cortical: Impaired sequencing, apraxia, poor judgment & insight, ↓ verbal fluency
- Subcortical: Similar only if frontalsubcortical nuclei circuits involved
 Visuospatial
- Cortical: Abnormal orientation and constructions
- Subcortical: Abnormal constructions

Construction Tests

Mental Status

AD = Alzheimer' s disease; FTD = Frontotemporal dementia; NPH = Normal pressure hydrocephalus

Barriers to Early Diagnosis of MCI and Dementia

- Patients with MCI and early dementia have impaired insight
- First present to the doctor an average of 3.5 years after cognitive symptoms start
- Physicians may not notice subtle cognitive deficits in routine office visits
- Often too much time or personnel resources required to administer testing

Barker WW et al. Alzheimer Dis Assoc Disord 2005;19:1-7

Brief Multi-domain Cognitive Assessment Tools

- Preference is to have tools that are practical, relevant, easy to use, and require minimal training
- Examples:
 - Mini-Mental State Examination (MMSE)¹
 - Montreal Cognitive Assessment (MOCA)²
 - AD8 informant interview³
 - Saint Louis University Mental Status examination (SLUMS)⁴
 - Self-Administered Gerocognitive Examination (SAGE)⁵ or the digital equivalent BrainTest⁶

1. Feher et al. Arch Neurol 1992; 49(1):87-92; 2. Nasreddine et al. J Am Geriatr Soc 2005; 53:695-699; 3. Galvin et al. Neurology 2006;67(11):1942-1948; 4. Tariq et al. Am J Geriatr Psychiatry 2006; 14(11):900-910; 5. Scharre et al. Alzheimer Dis Assoc Disord 2010; 24:64-71; 6. Scharre et al. Alzheimers Res Ther. 2017 Jun 27;9:44.

Comparative features of assessment tools

	Features	MMSE	МоСА	AD8	SLUMS	SAGE/BrainTest
	5 5	0-30 Higher score better	0-30 Higher score better	0-8 Score > 2 indicates impairment	0-30 Higher score better	0-22 Higher score better
	Administration	Clinician with patient	Clinician with patient	Clinician with informant and patient	Clinician with patient	Patient (self- administered); SAGE (paper), BrainTest (digital, tablet)
	Time to administer	7-10 minutes	10-13 minutes	3 minutes	10 minutes	10-15 minutes
	Cost	\$1.23 to PAR	free	free	free	SAGE: free BrainTest \$25
	1 2	84%/78% with cutoff 26 or less	87%/100% with cutoff of 25 or less	80%/84% with cutoff 2 or more	Comparable to MMSE but better at detecting mild Neurocognitive Disorders	95%/95% with a cutoff of \leq 16 to detect dementia and 95%/79% (90%/71%, BrainTest) with a cutoff of \leq 16 (15, BrainTest) to detect cognitive impairment
18	Obtaining test	Psychological Assessment Resources (PAR)	Mocatest.org	http://alzheimer.wu stl.edu/about_us/p dfs/ad8form2005.p df	aging successfully	SAGE: sagetest.osu.edu; BrainTest: https://braintest.com

SAGE Test

SAGE Test demonstrates high level of promotional sensitivity

Increased Website Traffic

- The Wexner Medical center site had more visits in a single day on 1.13.14 than any other day over the last 10 years!
- The SAGE page had 181,000 pageviews on 1.13.14 which was a 17,000% increase from the prior day.
- SAGE/BrainTest web page remains the most visited in all of OSU Web presence since 2014

NBC Nightly News and the Today Show

19

SAGE/BrainTest: Domains

SAGE: Change Over Time

• Significant Drop in SAGE Scores Revealed Dementia Conversion from MCI

• SAGE Scores of SCD Patients Were Significantly Higher than MCI Non-converters

Alzheimers Res Ther. 2021; 13:192 doi: 10.1186/s13195-021-00930-4

SAGE/BrainTest: for the Early Detection of Cognitive Impairment at PCP Visits

SAGE/BrainTest Usage Resulted in 6-Fold Detection of New Cognitive Conditions/Concerns

When SAGE was Utilized:

- PCPs documented detection of new cognitive conditions/concerns 6 times as often
- 9% vs 1.5%
- *p*=0.003

Scharre et al. American Academy of Neurology 2021 Annual Meeting Poster Presentation

Staged Screening Approach

Consider a Staged Approach to Screening

Scharre et al. Alzheimer Dis Assoc Disord 2010;24:64-71 at SAGEtest.osu.edu; Galvin et al. Neurology 2006;67:1942-1948; Nasreddine et al. J Am Geriatr Soc 2005;53:695-699

Laboratory Evaluation

Recommended for all dementias

- CBC
- Electrolytes, calcium, glucose, BUN, creatinine, LFT
- B12, folate
- TSH, T4
- FTA

Optional Evaluations Consider for rapidly evolving dementias

- Sed rate, inflammatory markers
- HIV, Lyme
- CXR, EKG
- Urinalysis
- Assays for heavy metals, toxins
- LP
- EEG

Biomarkers in AD

Jack et al. Lancet Neurol 9:119-129, 2010; Trojanowski J, Shaw L. et al., ADNI Biomarker Core Team, 2011

CSF AD Biomarkers

CSF TAU AND Aß42 LEVELS IN ALZHEIMER'S DISEASE

Correlating Tau and AB_{42} results rule in or rule out AD with 95%+ specificity and 60%+ sensitivity in 60+ year old patients with dementia.

WEXNER MEDICAL CENTER

Motter et al. Ann Neurol 1995;38:643-48

Blood Biomarkers in AD

Plasma biomarker tests are not currently FDA approved

- Preliminary studies have shown differences in plasma concentrations of Aβ42 and Aβ42/40 ratio^{1,2}, t-tau³ and p-tau⁴ in patients with AD compared with cognitively normal controls
- PrecivityAD test⁵
 - CLIA approved; not FDA approved; validation results not published
 - Looks at amyloid beta 42/40 ratio and ApoE proteotype (similar to Apo E genotype)
 - Reported specificity is 77% and sensitivity 92%

Plasma biomarker p-tau tests are not currently clinically available^{6,7}

- p-tau181: predicted progression to AD
- P-tau 217: increased in subjects before cognitive impairment or tau PET scans and at same time as tau CSF

1. Nakamura A, et al. Nature 2018;554:249–254; 2. Teunissen CE, et al. J Alzheimers Dis 2018;62:1857–1863; 3. Olsson B, et al. Lancet Neurol 2016;15:673–684; 4. Yang CC, et al. J Alzheimers Dis 2018;61:1323–1332; 5. Schindler et al. Neurology 93:e1647–e1659; 6. Brain 2020;143 (11):3170–3172; 7. JAMA Neurology 2021;78(2):149-156

The Ohio State University

WEXNER MEDICAL CENTER

Gray Matter Reductions in AD Using Voxel Based Morphometry

Typical AD PET Scan

Normal Brain

AD Brain

Provided courtesy of M. Mega, MD, PhD, Department of Neurology, UCLA School of Medicine.

Amyloid PET Imaging

 THE OHIO STATE UNIVERSITY

 WEXNER MEDICAL CENTER

Jagust W. et al., ADNI-GO PET Core Team, 2011

Amyloid PET Imaging

Jagust W.

et al., ADNI-GO PET Core

Team, 2011

Amyloid PET and Tau PET

Dopamine Transporter SPECT DaTscan for Lewy body dementia/Parkinsonism

DaTscan Normal

DaTscan Abnormal

Surendranathan A, O'Brien JT. Evidence-Based Mental Health 2018;21:61-65

Imaging Normal DaTscan

Imaging Abnormal DaTscan

Diagnosis of AD Stages¹

- Preclinical stage²: No clinical or cognitive symptoms but AD brain pathology has started (amyloid and tau proteins accumulation, cellular changes)
- Mild Cognitive Impairment due to AD (Prodromal AD)³: Decline from baseline cognitive abilities that are not so severe that they need hands-on assistance for daily activities they usually do themselves **plus** AD brain pathology
- AD Dementia⁴: Decline from baseline cognitive abilities that are severe enough to require hands-on assistance for daily activities they usually did for themselves **plus** AD brain pathology

Jack et al. Alzheimers Dement. 2018;14:535-562; 2. Sperling et al. Alzheimers Dement. 2011;7:280-92;
 Albert et al. Alzheimers Dement. 2011;7:270-9; 4. McKhann et al. Alzheimers Dement. 2011;7:263-9

Dementia with Lewy Bodies: Clinical Criteria

- Essential feature: Dementia
- Core clinical features:
 - Fluctuating cognition/attention/alertness
 - Recurrent visual hallucinations
 - REM sleep behavior disorder (may precede cognitive decline)
 - 1 or more features of Parkinsonism (bradykinesia, rest tremor, or rigidity)

Dementia with Lewy Bodies: Clinical Criteria

Supportive clinical features:

- Severe neuroleptic sensitivity
- Postural instability
- Repeated falls
- Syncope or other transient unresponsive episodes
- Severe autonomic dysfunction (constipation, orthostatic hypotension, urinary incontinence)
- Hypersomnia
- Hyposmia
- Hallucinations in other modalities
- Systematized delusions
- Apathy, anxiety, and depression

McKeith et al. Neurology 2017;89:88-100

Cognitive Rx in AD

Efficacy of Cholinesterase Inhibitors

- Donepezil (Aricept), Rivastigmine (Exelon), and Galantamine (Razadyne)
- All of them work
- Up to 80% of patients show no decline after 6 months of treatment; 50% no decline after 1 year
- Need to give for ≥ 12 months to determine utility
- Always titrate to highest dose

Galantamine: 36-month Change From Baseline in ADAS-cog/11

1. Torfs K et al Poster presented at the Sixth International Stockholm/Springfield Symposium on Advances in Alzheimer Therapy, April 2000. 2. Stern RG et al. *Am J Psychiatry*. 1994;151:3. 3. Data on file. Janssen Pharmaceutica.

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Cognitive Rx in AD

NMDA Antagonists: Memantine (Namenda)

- N-methyl-D-aspartate (NMDA) antagonists potentially prevent neuronal injury by reducing excitatory amino acid toxicity by glutamate
- Give in addition to cholinesterase inhibitor
- Side effects include headache, dizziness, fatigue, confusion

Memantine + Donepezil in Moderate to Severe AD Study

Results: Cognition – SIB

Memantine + Donepezil Produced Sustained Improvement in Cognition Above Baseline Compared With Donepezil Alone

Aducanumab/Lecanemab

Human immunoglobulin G1 monoclonal antibody

- Aducanumab (ADU) binds to soluble aggregated (oligomers and fibrils), lecanemab (LEC) to soluble protofibrils and both to insoluble forms of Aβ^{1,2}
- Phase 3 Trials:18 month, randomized, double-blind, placebo-controlled (ADU, n=3285; LEC, n=1795)
- ADU high dose (up to 10 mg/kg) and low dose (up to 6 mg/kg) and placebo: randomized 1:1:1
- LEC (100 mg/ml) and placebo; randomized 1:1
- Primary Endpoint: CDR-SB at 18 months
- Secondary Endpoints: MMSE, ADAS-cog 13 (14 and ADCOMS for LEC), ADCS-ADL-MCI, biomarkers

Top Line Cognitive and Functional Findings primary & secondary endpoints, week 78

	Aducanumab ¹		Lecanumab ²	
	Placebo Decline (n=548)	High dose difference vs. placebo (%) p-value (n=547)	Placebo decline (n=875)	Difference vs placebo (%) p-value (n=859)
CDR-SB	1.74	0.39 <mark>(-22%)</mark> 0.0120	1.66	0.45 <mark>(-27%)</mark> <0.001
MMSE or ADCOMS	-3.3 (MMSE)	0.6 (-18%) 0.0493	0.214 (ADCOMS)	-0.050 (-23%) <0.001
ADAS-Cog 13/14	5.162	-1.400 <mark>(-27%)</mark> 0.0097	5.58	-1.44 <mark>(-27%)</mark> <0.001
ADCS-ADL-MCI	-4.3	1.7 <mark>(-40%)</mark> 0.0006	-5.5	2.0 <mark>(-37%)</mark> <0.001

 Haeberlein et al. Alzheimer's Dement. 2020;16(Suppl. 9):e047259; <u>https://investors.biogen.com/static-files/8e58afa4-ba37-4250-9a78-2ecfb63b1dcb</u>
 Van Dyck et al, NEJM. 2022; DOI:10.1056/NEJMoa2212948

Aducanumab

Top Line Adverse Event Findings

- Discontinuation of treatment rates: ADU: 25% high dose, 16.3% placebo; LEC: 7%; 3% placebo
- AE: ADU High dose 91%, placebo 87%; LEC 89%, placebo 82%
- SAE: ADU High dose 12.4%, placebo 13.4%; LEC 14%, placebo 11.3%
- Deaths: ADU High dose 8, placebo 6; LEC 6, placebo 7
- ARIA-E: ADU High dose 34.8%, placebo 2.6%; LEC 12.6%, placebo 1.7%
- ARIA-H microhemorrhage: ADU High dose 18.1%, placebo 6.3%; LEC 14%, placebo 7.7%
- 98% (ADU) and 94% (LEC) of the time the MRI findings of ARIA E resolved
- Apo E4 status ADU: positive had 42% and negative had 20% ARIA-E
- Apo E4 status LEC: positive had 15.8% and negative had 5.4% ARIA-E
- Symptomatic ARIA: ADU High dose 24.4%, placebo 5.6%
- Symptomatic ARIA: LEC 2.8%, placebo 0%

Amyloid Related Imaging Abnormalities: ARIA-Edema (ARIA-E)

WEXNER MEDICAL CENTER

ARIA-Hemorrhage (ARIA-H)

4, 1: WIP Axial T2* FFE RP0724_201 654_001 1/1/1945 F 09-Nov-2020 11.02:52 Scan Nr. 4, 1 - Slice 15/27		OSUMC Wright Center 3T 3-2955 Slice Thk 5 0 / 0 5 FOV 240 mm Zoom 100%
FFE/M TE 16ms - TR 706ms Flip Angle 20°		
	RA E	
	E. A.J	
	Lexed	
FH-7° L5 P-9 H20	L 1707 W 2968	

ARIA-superficial siderosis

WEXNER MEDICAL CENTER

ARIA MRI Classification Criteria

ARIA Type		rity	
	Mild	Moderate	Severe
ARIA-E	FLAIR hyperintensity confined to sulcus and or cortex/subcortical white matter in one location < 5 cm	FLAIR hyperintensity 5 to 10 cm, or more than 1 site of involvement, each measuring < 10 cm	FLAIR hyperintensity measuring > 10 cm, often with significant subcortical white matter and/or sulcal involvement. One or more separate sites of involvement may be noted.
ARIA-H microhemorrhage	≤ 4 new incident microhemorrhages	5 to 9 new incident microhemorrhages	10 or more new incident microhemorrhages
ARIA-H superficial siderosis	1 focal area of superficial siderosis	2 focal areas of superficial siderosis	> 2 focal areas of superficial siderosis

Current Approved Treatments for DLB

- Rivastigmine approved for PDD by FDA
- Donepezil approved for DLB in Japan
- Memantine not approved; a few studies with trends
- Hints that cholinesterase inhibitors and memantine may have disease modifying characteristics

Promising Treatments for DLB: Neflamapimod

- Neflamapimod: a small molecule inhibits mitogen-activated serine/theronine protein kinase (p38 MAPK alpha)
- 2020 Positive (improved cognitive composite) phase 2 trial for mild to moderate DLB
- Intra-cellular enzyme p38 MAPK alpha stimulates pro-inflammatory cytokines by microglia producing inflammationinduced synaptic toxicity

- Novel therapeutic medication trials for Mild Cognitive Impairment (MCI) progressing to AD
 - Monoclonal antibody against amyloid
 - Monoclonal antibody against tau (does not enter cells)
 - Transdermal nicotine for patients with MCI
 - Treating Glutamate dysfunction in Alzheimer's disease
 - Treatment trials to improve synaptic density and health
 - Anti-inflammatory agents to treat AD
 - Varoglutamstat to reduce N3pE, a toxic form of the amyloid protein activating inflammation
 - CT1812 to target and displace amyloid oligomers bound to neuronal receptors

- Innovative therapeutic device clinical trials for AD:
 - Deep Brain Stimulation Neuropacemaker inserted into the frontal lobes on both sides to improve cognitive, behavioral, and functional impairments in AD subjects
 - Low intensity focused ultrasound temporary breakdown of blood brain barrier designed to remove amyloid from the brain: active study
 - BDNF (brain derived neurotrophic factor) gene therapy phase I, first in human clinical trial AAV2 vectormediated delivery to entorhinal cortex for MCI due to AD or mild AD dementia

- Discovering new treatments for the behavioral disturbances in dementia:
 - Escitalopram for agitation
 - Dextromethorphan/quinidine for the treatment of agitation in patients with AD
 - CVL-871 is a dopamine D1 receptor partial agonist for the treatment dementia related apathy

- Discover, standardize, and validate biomarkers for AD treatment trials:
 - ADNI4
 - Banking serum and cerebrospinal fluid for future studies in patients with dementia with Lewy bodies, vascular dementia, frontotemporal dementia, MCI, and Alzheimer's disease
- Trial-ready cohort for preclinical/prodromal Alzheimer's disease:
 - Global Alzheimer's Platform
 - ICARES for aducanumab
- Pre-clinical trial to prevent AD using BAN2401 amyloid monoclonal antibody treatment

Future Rx Strategies

- Anti-amyloid strategies
- Tau interventions
- Anti-inflammatory strategies
- Combined drug treatments
- Gene therapy

OSU Memory Disorders Research Center

OSU Memory Disorders Research Center Fitting the Pieces Together

Douglas W. Scharre, MD	Maria Kataki, MD, PhD	
Arun Ramamurthy, MD	Soumya Bouchachi, MD	
Daniel Lee, MD	Kristina Thurin, MD	
Renee Kovesci, MS, ANRN-CNP	Jessica Truelove, MS, APRN-CNP	
Chris Nguyen, PhD	Erica Wright, LISW-S	
Jennifer Icenhour, BA, CCRC	Nicole Vrettos, BS, MS CCRC	
Brooke Hazard, BS	Kristina Rawson, BA	
Leslie Reynolds, BS Sydney Harmon	Emily Shalosky, BS, MS J. Ian Castle, RN	
Barbara Eason Himes, PhD	Victoria Klee, MS, GCG Teagan Lucas	
Amanda Kyle Grace Petryk	Haikady N. Nagaraja, PhD	

