PROXIMAL HAMSTRING AVULSION REPAIR CLINICAL PRACTICE GUIDELINE

Background

The posterior thigh consists of three hamstring muscles: semimembranosus, semitendinosus, and biceps femoris. Proximal hamstring injuries and partial tears are common sports injuries; however, complete avulsion tears are more rare. Complete hamstring avulsion injuries occur most often from a slip or a fall that results in forced hip flexion along with knee extension. These injuries result in either complete or partial loss of hamstring function, depending on the severity of the injury and often times require surgical repair due to difficulty with ADL’s and sport activities. Surgical repair is required when there is a complete 3-tendon tear or if there is significant retraction (> 2 cm) of two tendons. The surgical repair for a hamstring avulsion is an open procedure that requires anchors placed in the ischium, and sutures from the anchors are then used to secure the tendon to the ischium. If an avulsion fracture of the ischium is involved, it may require fixation via hardware and screws. Following surgery, patients are weight bearing as tolerated and use crutches for the first 1-2 weeks in order to protect the repair.

Disclaimer

Progression is time and criterion-based, dependent on soft tissue healing, patient demographics, and clinician evaluation. If you are working with an Ohio State Sports Medicine patient and questions arise, please contact the author by calling our office at (614) 293-2385.
Summary of Recommendations

<table>
<thead>
<tr>
<th>General</th>
<th>Weight Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>● No end-range hamstring stretching and long-sitting for 6 weeks</td>
<td>● Weight bearing as tolerated with crutches for 0-2 weeks</td>
</tr>
<tr>
<td>● No isolated isotonic hamstring strengthening for 8 weeks</td>
<td>● Gradually increase weight bearing as able and wean off of crutches thereafter</td>
</tr>
<tr>
<td>● Avoid fast walking for 6 weeks</td>
<td></td>
</tr>
</tbody>
</table>

Weight Bearing
- Lower Extremity Functional Scale (LEFS) at each visit
- Consider collecting the Hip Outcome Score (HOS) at 1st visit, monthly, and discharge
 - ADL (17 items) | Sports (9 items)

Patient Reported Outcomes (PRO)
- Lower Extremity Functional Scale (LEFS) at each visit
- Consider collecting the Hip Outcome Score (HOS) at 1st visit, monthly, and discharge
 - ADL (17 items) | Sports (9 items)

Criteria to Discharge Assistive Device
- Normalized gait with no increase in pain
- Good quad and glute activation and strength
- SLR flexion without quad lag

Criteria to Initiate Plyometric Program
- Full, functional, pain free ROM
- > 80% quad and hamstring (hip at 0° and 90° of flexion), and hip (using handheld dynamometer) strength compared to uninvolved leg
- Squat > 150% body weight (barbell squat or leg press)
- 10 forward and lateral step downs from 8” step with proper mechanics

Criteria to Initiate Running Program
- Full, functional, pain-free ROM
- > 80% quad and hamstring (hip at 0° and 90° of flexion), and hip (using handheld dynamometer) strength compared to uninvolved leg
- Squat > 150% BW (barbell squat or leg press)
- 10 forward and lateral step downs from 8” step with proper mechanics
- Hop and hold with proper mechanics (uninvolved → involved)
- Ability to tolerate 200-250 plyometric foot contacts without reactive pain
- No gross visual asymmetry with treadmill/over ground running

Criteria for Return to Sport
- Functional testing:
 - >90% Limb Symmetry Index (LSI) with hop testing
- Isokinetic testing (or handheld dynamometer)
 - >90% strength LSI at 60°/sec, 180°/sec, and 300°/sec testing
 - Hamstring to quadriceps strength ratio of 55-65% bilaterally
- Strength: > 90% body weight with SL leg press
- Functional Performance: to date, no return-to-sport criteria have been tested and published for patients undergoing proximal hamstring avulsion repair
 - Patients participating in sports activities should complete a number of sport specific tasks prior to being allowed to return to sport.
- PROs: Score ≥ 90%
- No increase in symptoms with sport-specific progression or testing
- Physician clearance
Phase I: Early Post-Operative Protective Phase (0-4 weeks)

Goals
- Protect repair
- Pain control
- Wean off crutches

Precautions
- Weight bearing status
 - Weight-bearing as tolerated (WBAT) with crutches for 0-2 weeks
 - Gradually increase weight bearing as able and wean off of crutches thereafter
 - Educate patient on taking smaller steps when weaning off of crutches
- Avoid combined hip flexion and knee extension (lengthened hamstring position)
- No fast walking for 6 weeks

Therapeutic Exercises
- Glute sets
- Ankle pumps
- Quad sets
- Abdominal bracing
- Straight leg raise abduction only
- Compression and cryotherapy
- Gait training with crutches
 - Shortened step length for involved lower extremity
- Gentle PROM of hip, knee and ankle
 - Avoid combined hip flexion and knee extension (lengthened hamstring position)
- Gentle soft-tissue mobilization at proximal insertion/incision site once wound is fully closed
- Initiate closed-chain terminal knee extensions
 - TKE’s (resisted quad sets)

Criteria to Progress to Phase II
- Full hip, knee and ankle PROM in protected positions
 - Avoid lengthened hamstring position
- Good quad control in NWB position
- Pain and inflammation control
- Normalization of gait
Phase II: D/C Crutches to Pain free with ADLs (4-6 weeks)

<table>
<thead>
<tr>
<th>Goals</th>
<th>Precautions</th>
<th>Therapeutic Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Protect repair</td>
<td>● Avoid end range/aggressive lengthened hamstring position</td>
<td>● Initiate stationary bike (no resistance at first)</td>
</tr>
<tr>
<td>● Initiation of strengthening of hamstring and of proximal and distal musculature (glutes, core, quads)</td>
<td>● All exercises to patient tolerance</td>
<td>● Weight bearing progression, per patient tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Initiate gentle PROM straight leg hamstring stretching per patient tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Continue soft tissue mobilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Aquatic activities (if available): forward and retro ambulation, gentle AROM (avoid terminal stretching), gentle partial weight bearing squats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Initiate single leg stance and static proprioceptive activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Initiate sub-maximal hamstring isometrics in supine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ Avoid lengthened hamstring positions initially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ Begin at 30°, 45°, 60°, 90° knee flexion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Straight leg raises in flexion (0° to 30° maximum ROM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Hip strengthening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ SLR abduction and adduction, clamshells, hooklying hip abd isometrics, bridges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Calf raises</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Core strengthening (lumbopelvic control)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ Pelvic tilts, transverse abdominis activation, prone and side planks</td>
</tr>
</tbody>
</table>

Criteria to Progress to Phase III

● SLR without quad lag
● Achieve 45° SLR PROM
Phase III: Pain free ADLs to Initiating Impact Activities (6-12 weeks)

Goals
- Correct compensatory movement patterns with functional movements
- Optimal neuromuscular control, balance, and proprioception
- Normalize strength of core/trunk and glutes
- Tolerate single limb support, progressing from single to multi-planar movements
- Increase volume/intensity of aerobic activities; restore non-impact cardiovascular fitness
- Initiate progressive plyometric activities
- Straight leg raise 0°-70° PROM initially and progress to full PROM

Precautions
- Avoid aggressive stretching, especially at end-range
- All exercises per patient tolerance

Criteria to Initiate Plyometrics (Late phase)
- Full, functional, pain free ROM
- > 80% quadriceps, hamstring (hip at 0° and 90° of flexion), and hip (using hand-held dynamometer) strength compared to uninvolved leg
- Squat > 150% body weight (barbell squat or leg press)
- 10 forward and lateral step downs from 8” step with proper mechanics

Therapeutic Exercises

Early Exercises:
- Initiate terminal/end-range hamstring stretching
- Initiate elliptical, treadmill walking
- Initiate gentle isotonic resistive hamstring exercises
 - Supine heel slides
 - Bilateral hamstring curl machine (light resistance)
 - Begin with mid-range strengthening initially
- Bridge progressions
- Progress dynamic core strength and trunk stabilization
- Progress proprioceptive exercises
 - Single leg stance variations with perturbations
- Progressive lower extremity strengthening

Late Exercises:
- Initiate partial weight bearing plyometrics on shuttle
 - Progress to FWBing hop-downs (light)
 - Start with 2 inch height box/step and progressively increase height
 - Progress from DL to SL
- Progress full hamstring and quad strengthening program
 - Progress bilateral hamstring to unilateral
 - Leg press
 - Bridging on swiss ball
 - Lunges (forward and retro)
 - RDLs (DL → SL)
 - KB swings
- Advanced core and trunk stabilization exercises
- Dynamic proprioceptive activities
Phase IV: Return to Full Impact/Running (12-16 weeks)

Goals
- Progression of full-weight bearing plyometric activities without an increase in symptoms
- Isokinetic and functional hop testing for those needing return to sport clearance

Therapeutic Exercises
- Multi-directional plyometrics: DL → SL
- Progress single leg strengthening
- Progress to eccentric hamstring strengthening

Criteria to Initiate Running
- Full, functional, pain-free ROM
- > 80% quadriceps, hamstring (hip at 0° and 90° of flexion), and hip (using hand-held dynamometer or isokinetic testing for quadriceps/hamstring) strength compared to uninvolved leg
- Squat > 150% BW (barbell squat or leg press)
- 10 forward and lateral step downs from 8” step with proper mechanics
- Hop and hold with proper mechanics (uninvolved → involved)
- Ability to tolerate 200-250 plyometric foot contacts without reactive pain
- No gross visual asymmetry and rhythmic strike pattern with treadmill or over ground running

Criteria to Progress to V
- Jog on treadmill and even surfaces with symmetrical mechanics and no symptoms
- Isokinetic testing: >80% LSI
- Functional hop testing: > 80% LSI (Appendix A)
- Y balance 85% of greater on anterior and posterior lateral reach (Appendix B)
Phase V: Return to Sport/Full Activity (16-24 weeks)

Goals
- Progressing multi-directional and advanced plyometrics
- Sport specific drills
- Physician clearance for return to sport

Therapeutic Exercises
- Hops to/from BOSU, multidirectional
- Multidirectional running
- Resisted forwards running
- Initiating sport specific drills
 - progress 50% to 75% to full speed/effort

Criteria for Discharge and Return to Sports
- Physician clearance
- Isokinetic testing: >90% LSI
 - Hamstring to quadriceps strength ratio of 55-65% bilaterally
- Functional hop testing: >90% LSI (see appendix)
- No increase in symptoms with sport specific progressions or testing
Appendix A: Single Leg Hop Series

1) **Single hop for distance:** Have the subject line their heel up with the zero mark of the tape measure, wearing athletic shoes. The subject then hops as far as he/she can, landing on the same push off leg, for at least 3 seconds. The arms are allowed to move freely during the testing. Allow him/her to perform 2 practice hops on each leg. Then, have the subject perform 2 testing trials, recording each distance from the starting point to the back of the heel. Average the distanced hopped for each limb. The Limb Symmetry Index: Involved limb distance/Uninvolved limb distance X 100%.

2) **Cross-over hop for distance:** The subject lines their heel up with the zero mark of the tape measure and hops 3 times on one foot, crossing fully over the center line each time. Each subject should hop as far forward as he/she can on each hop, but only the total distance hopped is recorded. The arms are allowed to move freely during the testing. Allow him/her to perform 2 practice hops on each leg. Then, have the subject perform 2 testing trials, recording each distance from the starting point to the back of the heel. Average the distanced hopped for each limb. The Limb Symmetry Index: Involved limb distance/Uninvolved limb distance X 100%.

3) **Triple hop for distance:** The subject lines their heel up with the zero mark of the tape measure and hops 3 times on one foot. Each subject should hop as far forward as he/she can on each hop, but only the total distance hopped is recorded. The arms are allowed to move freely during the testing. Allow him/her to perform 2 practice hops on each leg. Then, have the subject perform 2 testing trials, recording each distance from the starting point to the back of the heel. Average the distanced hopped for each limb. The Limb Symmetry Index: Involved limb distance/Uninvolved limb distance X 100%.

4) **Timed 6-meter hop:** The subject lines their heel up at the zero mark of the tape measure and hops, on cue with the tester, as fast as they can the length of the 6-meter tape. The arms are allowed to move freely during the testing. Allow him/her to perform 2 practice hops on each leg. Then, have the subject perform 2 testing trial, recording each distance from the starting point to the back of the heel. Average the distanced hopped for each limb. The Limb Symmetry Index: Involved limb time/Uninvolved limb time X 100%.
Appendix B: Y Balance

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posteromedial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterolateral</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Difference should be less than 4 cm for return to sport and preparticipation screening.

Composite Score = \[\frac{(\text{Anterior} + \text{Posteromedial} + \text{Posterolateral})}{(3 \times \text{Limb Length})} \times 100 \]

<table>
<thead>
<tr>
<th></th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

11) O Mohamed et al: Relationship between wire EMG activity, muscle length, and torque of the hamstrings. *Clinical Biomechanics* (2002); 17:569-579