Advancing science through transformative clinical research

Clinical research enables our medical professionals to understand mechanisms that lead to new solutions. Once those solutions are developed, clinical trials ensure they are safe and ready for use among those who need them.

 

Douglas Scharre, MD

ScharreDougThe Ohio State University Memory Disorders Research Center is working on groundbreaking research projects with the very real potential to help patients afflicted with cognitive disorders and dementia. Researchers study drugs designed to remove tau and amyloid (both proteins that are toxic and kill brain cells) from the brains of patients with Alzheimer’s disease and mild cognitive impairment. Aducanumab is being submitted in 2020 to the FDA for consideration for approval for patient use. An innovative approach to treat Alzheimer’s disease with low intensity focused ultrasound is being investigated. Researchers also are testing new drug treatments for those with Lewy body disease and are conducting a study to discover novel imaging and sleep characteristics that will help with early diagnosis. Additional clinical trials are underway to study treatments to improve brain health and problem behaviors seen in dementia.

View Dr. Scharre's profile


Aristide Merola, MD, PhD

Merola_AristideDr. Merola is leading a study focusing on therapeutic strategies and clinical challenges in Parkinson's disease (PD), with a particular interest in innovative technologies. An investigator-initiated study aims to compare gait and postural stability in patients receiving enteral levodopa infusion vs. oral levodopa by using wearable devices. Results will provide critical insights into the complex pathophysiology of PD-associated postural instability and inform the development of an artificial intelligence-based algorithm for remote monitoring of gait impairment. Additional areas of interest involve advanced technologies for neuromodulation. A clinical trial is testing the efficacy of directional deep brain stimulation (dDBS), an innovative technology to selectively activate brain regions associated with clinical benefits while minimizing stimulation-induced side effects. Another ongoing trial is evaluating the clinical efficacy of MRI-guided focused ultrasound, a pain-free incisionless alternative to DBS, in managing symptoms associated with Parkinson's disease.

View Dr. Merola's profile


Jan Schwab, MD, PhD

SchwabJanDr. Schwab aims to improve neurological recovery and outcomes in spinal cord injured patients. He is site PI of a first-in-human interventional trial testing a biologic drug for safety and putative capacity to improve neurological function in patients after chronic spinal cord injury. Nerve fiber (axon) outgrowth is hindered by molecular stop signs surrounding the injured spinal nerve fibers. Blocking the receptor to which those stop signs can bind is the main neurobiological rationale to reverse axonal growth inhibition, and it’s mediated by NoGo Trap (Axer‐204, Nogo Receptor decoy, hNgR1(310)ecto‐Fc Ala Ala). NoGo Trap is a biologic drug injected into the intrathecal space and has been developed through NIH funding by the Bridging Interventional Development Gaps (BrIDGs) program. Conducted by a multidisciplinary team, Ohio State has been the first site nationwide to apply NoGo Trap (www.clinical.trials.gov under NCT03989440). The Ohio State University is designated by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) as a Model System for spinal cord injury, for which Dr. Schwab serves as PI.

 View Dr. Schwab's profile Schwab Lab

Bakri Elsheikh, MD

ElsheikhBakriDr. Elsheikh’s main clinical research focus is the study of outcome measures and experimental therapeutics in individuals with neuromuscular disease—in particular, spinal muscular atrophy (SMA) and muscular dystrophies. Dr. Elsheikh holds a particular interest in the field of electro-diagnostic studies’ role as an outcome measure in clinical trials, and a special interest in autoimmune neuromuscular disorders such as myasthenia gravis, autoimmune inflammatory neuropathies and myositis.

View Dr. Elsheikh's profile

Vinay Puduvalli, MBBS

PuduvalliVinayVinay Puduvalli, MBBS, leads Ohio State’s Division of Neurooncology, a comprehensive, nationally recognized patient care and research unit that provides inpatient, outpatient and consultative clinical care to patients with neurological malignancies and neurological complications of cancer and cancer therapies. The division’s robust clinical, translational and basic research activities include new drug development, biological and targeted therapies, basic mechanisms of neurological malignancies and research into brain tumor microenvironment. It also offers a UCNS-certified neuro-oncology fellowship program that provides comprehensive superspecialty clinical and research training to neurologists to grow the next generation of neuro-oncologists. Division members have leadership roles in national consortia and collaboratives, are involved in both federally funded research and industry partnerships, and are strong partners in patient and caregiver advocacy.

View Dr. Puduvalli's profile


Sandra Kostyk, MD, PhD

KostykSandraDr. Kostyk’s research team is using novel approaches to treat Parkinson’s disease and Huntington’s disease. Working closely with neurosurgeon colleagues, these scientists are studying the safety and effectiveness of using modified viral vectors to transfer genes into the brains of individuals with these disorders. They’re currently enrolling individuals with advanced Parkinson’s disease who have motor fluctuations in a study aimed at replacing an enzyme that’s essential for converting levodopa to dopamine, a molecule that deficient in Parkinson’s disease. They’re also starting a new trial transferring a gene that will help brain cells produce GDNF, a growth factor that has the potential to benefit Parkinson’s patients and and slow the course of the disease. And they’re participating in a novel approach to modify the course of Huntington’s disease by the infusion of a viral vector linked to a gene that can silence the mRNA instructions that make the Huntingtin protein that causes this devastating disorder.  

View Dr. Kostyk's profile