Assisting researchers with confocal imaging.

The Neuroscience Imaging Core provides neuroscience researchers with the training, expertise and equipment that they need to perform fluorescence confocal microscopy of cells, tissues and zebrafish embryos in the living and fixed state. We provide access to well-maintained wide-field, point-scanning and spinning disk confocal microscopes, as well as expert consultation and assistance with design and execution of imaging experiments.

Capabilities include support for long-term time-lapse imaging of cells, tissue slices and zebrafish embryos, advanced imaging applications such as imaging tiling, photoactivation, FRAP and FRET, 3D rendering, and sophisticated image processing and analysis capabilities.

Please see our Terms of Service and User Fee Structure for specifics regarding use of this core.

 

Andor Confocal

Andor Revolution WD Spinning Disk Confocal

The Andor Revolution WD is the Imaging Core’s spinning disk laser confocal system, ideal for live imaging of cells, tissues and zebrafish embryos. 

Features include:

  • Inverted Nikon TiE microscope, fully motorized
  • Nikon Perfect FocusTM focus stabilization system
  • High Numerical Aperture (NA) oil and water immersion objectives
  • Differential interference contrast microscopy
  • Okolab stage-top incubator with temperature and (CO2) control
  • Okolab objective heater
  • Motorized XYZ piezo stage
  • Two Andor Ultra EMCCD cameras
  • One Andor Neo sCMOS camera
  • Simultaneous two-color imaging (GFP/RFP or CFP/YFP)
  • Yokogawa CSU-W1 fully motorized confocal scanner unit
  • Efficient bypass mode allows for wide-field imaging
  • Six laser lines: 405nm, 445nm, 488nm, 515nm, 561nm, 640nm
  • FRAPPA laser-galvo scanner
  • FRAP, FRET, photoactivation and photoconversion applications
  • MetaMorphTM Premier software for image acquisition and analysis

Click here for information about objectives and lasers.

Click here for a detailed description. 

Leica Confocal

Leica TCS SL Point-Scanning Confocal

The Leica TCS SL is the Imaging Core’s point-scanning laser confocal system, ideal for imaging of fixed specimens.

System features:

  • Leica DM IRE2 inverted microscope stand
  • High Numerical Aperture (NA) oil and water immersion objectives
  • Differential interference contrast microscopy
  • Bioptechs heated chamber for live imaging
  • Leica objective heater for live imaging 
  • Z-galvo stage for fast acquisition of Z-stacks
  • Six laser lines: 458nm, 476nm, 488nm, 514nm, 543nm and 633nm 
  • Acousto-optical tunable filter (AOTF) for fast control of laser power
  • Ability to scan user-defined regions of interest
  • Three spectral 12-bit PMT detectors for three-channel fluorescence
  • One 12-bit PMT detector for transmitted light imaging
  • FRAP and FRET capability

Click here for information about objectives and lasers.

Click here for a detailed description.

Zeiss Axiophot

Zeiss Axiophot Microscope

The Zeiss Axiophot is a basic upright wide-field microscope for monochrome and true-color brightfield and epifluorescent imaging. 

Click here for information about objectives and filter cubes.

Click here for a detailed description. 

 

Training and Scheduling

Microscope Training

You must attend a training seminar to use the microscope. Seminars are held in Rightmire Hall. Please contact the Imaging Core manager, Paula Monsma, at 614-293-0939 or monsma.1@osu.edu for the seminar schedule.

Andor Revolution WD Manuals and Handouts

Andor Training Handout: Downloading a copy of the handout does not override the need to attend a training seminar.

Andor Microscope Manual: This is a copy of the manual located in the confocal room.

Leica TCS SL Manuals and Handouts

Leica Training Handout: This is a copy of the handout, for your convenience. However, you will still need to attend a training seminar.

Leica Confocal Manual: This is a copy of the manual located in the confocal room.

Leica Microscope Manual: This is a copy of the manual located in the confocal room.

 

Microscope Scheduling

Scheduling for each instrument is coordinated online. Please contact the Facility Manager, Paula Monsma, at 614-293-0939 or monsma.1@osu.edu for access to the scheduling calendar.

Access Policy

Trainee: Supervised, Monday – Friday, 9 a.m. – 5 p.m. 

  • Required experience: Seminar and minimum of two hands-on training sessions. Advancement decided on a case-by-case basis.

Standard User: Unsupervised, Monday – Friday, 9 a.m. – 5 p.m.

  • Required experience: Seminar and minimum of 10 unsupervised sessions. Advancement decided on a case-by-case basis.

Experienced User: Unsupervised, Monday – Friday, 9 a.m. – 5 p.m., as well as evenings and weekends

  • Required experience: Advancement decided on a case-by-case basis.

Resources

Technical Support

Your first contact for technical support should always be the Facility Manager, Paula Monsma.

Leica TCS SL

Leica OneCall: 866-830-0735
confocal@leica-microsystems.com

Technical Bulletins
Leica TCS SL

Publications

Publications

Publications

Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell. 2009 Dec;20(23):4997-5006. doi: 10.1091/mbc.E09-04-0304. Epub 2009 Oct 7. PMCID: PMC2785742

Colako─člu G, Brown A. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. J Cell Biol. 2009 Jun 1;185(5):769-77. doi: 10.1083/jcb.200809166. Epub 2009 May 25. PMCID: PMC2711597

Alami NH, Jung P, Brown A. Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses. J Neurosci. 2009 May 20;29(20):6625-34. doi: 10.1523/JNEUROSCI.3829-08.2009. PMCID: PMC2943491

Boon KL, Xiao S, McWhorter ML, Donn T, Wolf-Saxon E, Bohnsack MT, Moens CB, Beattie CE. Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects. Hum Mol Genet. 2009 Oct 1;18(19):3615-25. doi: 10.1093/hmg/ddp310. Epub 2009 Jul 10. PMCID: PMC2742401

Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH, Kaspar BK. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010 Mar;28(3):271-4. doi: 10.1038/nbt.1610. Epub 2010 Feb 28. PubMed PMID: 20190738; PubMed Central PMCID: PMC2889698.

Ramesh T, Lyon AN, Pineda RH, Wang C, Janssen PM, Canan BD, Burghes AH, Beattie CE. A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease. Dis Model Mech. 2010 Sep-Oct;3(9-10):652-62. doi: 10.1242/dmm.005538. Epub 2010 May 26. PubMed PMID: 20504969; PubMed Central PMCID: PMC2931540.

Le TT, McGovern VL, Alwine IE, Wang X, Massoni-Laporte A, Rich MM, Burghes AH. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet. 2011 Sep 15;20(18):3578-91. Epub 2011 Jun 13. PMCID: PMC3159555

Gu C, and Gu YZ. 2011. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. The Journal of Biological Chemistry 286, 25835-25847 PMCID: PMC3138291

Yoo JY, Haseley A, Bratasz A, Chiocca EA, Zhang JY, Cain D, Powell K, Kaur B. Anti-tumor efficacy of 34.5ENVE: a transcriptionally retargeted and “Vstat120” oncolytic virus. Molecular Therapy 2012 20(2):289-297. PMCID: PMC3277242

Gu YZ, Barry J, McDougle R, Terman D, and Gu C. (2012) Alternative splicing regulates Kv3.1 polarized targeting to adjust the maximal spiking frequency. The Journal of Biological Chemistry 287, 1755-1769 PMCID: PMC3265858

Jukkola P, Lovett-Racke AE, Zamvil SS, and Gu C. (2012) K+ channel alterations in the progression of experimental autoimmune encephalomyelitis. Neurobiology of Disease 47, 280-293. PMCID: PMC3367054

Gardner A, Jukkola P, and Gu C. (2012) Myelination of rodent hippocampal neurons in culture. Nature Protocols 7, 1774-1782 PMCID: PMC3536533

Thomas SN, Funk KE, Wan Y, Liao Z, Davies P, Kuret J, Yang AJ. (2012). Dual modification of Alzheimer's disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. Jan;123(1):105-17. Epub 2011 Oct 28. PMCID: PMC3249157

Hao le T, Wolman M, Granato M, Beattie CE. Survival motor neuron affects plastin 3 protein levels leading to motor defects. J Neurosci. 2012 Apr 11;32(15):5074-84. doi: 10.1523/JNEUROSCI.5808-11.2012. PMCID: PMC3355766

Yoon SO, Park DJ, Ryu CH, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K. 2012. JNK3 perpetuates metabolic stress induced by Abeta peptides. Neuron, 75: 824-837. PMCID: PMC3438522

Monsma PC and Brown A. (2012). FluoroMyelinTM Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin. Journal of Neuroscience Methods, 209:344-350. PMCID: PMC3429707

Taylor NJ, Wang L and Brown A. (2012). Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration. Cytoskeleton, 69:535-544. PMCID: PMC3415975

Lotti F, Imlach WL, Saieva L, Beck ES, Hao LT, Li DK, Jiao W, Mentis GZ, Beattie CE, McCabe, BD and Pellizzoni L. (2012) A SMN-dependent U12 splicing event essential for motor circuit function. Cell, 151: 440-454. PMCID: PMC3474596

Uchida A, Çolako─člu G, Wang L, Monsma PC and Brown A. (2013). Severing and end-to-end annealing of neurofilaments in neurons. Proceedings of the National Academy of Sciences USA, 110: E2696–E2705. PMCID: PMC3718109

Hao LT, Duy PQ, Jontes JD, Wolman M, Granato M and Beattie CE. (2013) Temporal requirement for SMN in motoneuron development. Human Molecular Genetics 22: 2612-2625. PMCID: PMC3674802

Gassman A, Hao LT, Bhoite L, Bradford CL, Chien C-B, Beattie CE, Manfredi JP. (2013) Small Molecule Suppressors of Drosophila Kinesin Deficiency Rescue Motor Axon Development in a Zebrafish Model of Spinal Muscular Atrophy. PLoS ONE 8:e74325. PMCID: PMC3762770

Gu Y, Barry J, and Gu C. (2013) Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites. The Journal of Physiology 591, 2475-2490. PMCID: PMC3678039

Barry J, Xu M, Gu Y, Dangel A, Shrestha C, and Gu C. (2013) Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels. Journal of Cell Science 126, 2027-2041. PMCID: PMC3666255

Jukkola P, Guerrero T, Gray V, and Gu C (2013) Astrocytes differentially respond to inflammatory autoimmune insults and imbalances of neural activity. Acta Neuropathologica Communications 1, 70; PMCID: PMC3893391

Tep C, Lim, TH, Ko PO, Getahun S, Goettl VM, Massa S, Basso M, Longo FM, and Yoon SO. (2013). Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci. 33: 397-410. PMCID: PMC3701049

Barry J, Gu Y, Jukkola P, O’Neill B, Gu H, Mohler PJ, Thirtamara-Rajamani K, and Gu C (2014) Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons. Developmental Cell 28, 117-131; PMCID: PMC3970081

Koemeter-Cox AI, Sherwood TW, Green JA, Steiner RA, Berbari NF, Yoder BK, Kauffman AS, Monsma PC, Brown A, Askwith CC and Mykytyn K. (2014) Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc Natl Acad Sci U S A, 111, 10335-40. PMCID: PMC4104922

Lyon AN, Pineda RH, Hao le T, Kudryashova E, Kudryashov DS, and Beattie CE. Calcium binding is essential for plastin 3 function in Smn-deficient motoneurons. (2014) Hum Mol Genet. 23(8):1990-2004. PMCID: PMC3959813

Tian, J.B., Tep, C., Sadisivan, S., Smeyne, R., Zhu, M.X., and Yoon, S.O. 2014. P75 regulates Purkinje cell firing by modulating SK channel activity through Rac 1. J. Biol. Chem. 289:31458-31472.

McGovern Vl, Iyer C, Arnold WD, Gombash SE, Blatnik AJ, Zaworski PG, Foust KD, Burghes AH. SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA Hum Mol Genet 2015 Oct 1;24(19):5524-41. doi: 10.1093/hmg/ddv283. Epub 2015 Jul 23. PMCID: PMC4572068

Iyer C. McGovern VL, Murray JD, Gombash SE, Foust KD, Janssen PM, Burghes AH. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015 Nov 1;24(21):6160-73. doi: 10.1093/hmg/ddv332. Epub 2015 Aug 13. PMCID: PMC4599674

Shih NP, François P, Delaune EA, Amacher SL. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development. 2015 May 15;142(10):1785-93. doi: 10.1242/dev.119057. PubMed PMID: 25968314; PubMed Central PMCID: PMC4440927.

Uchida, A, Monsma, PC, Fenn, JD, Brown, A. Live-cell imaging of neurofilament transport in cultured neurons. Methods in Cell Biology 2015. In press. http://dx.doi.org/10.1016/bs.mcb.2015.07.001

Salvucci, O., Ohnuki, H., Maric, D., Hou, X., Li, X., Yoon, S.O., Segarra, M., Eberhart, C.G., Acker-Palmer, A., and Tosato, G. 2015. EphrinB2 controls vessel pruning through STAT1-JNK3 signaling. Nat. Communications, 6: 6576.

Hao LT, Duy PQ, Jontes JD, Beattie CE. (2015) Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy. Human Molecular Genetics 24:346-360

Li H, Custer SK, Gilson T, Hao LT, Beattie CE, Androphy EJ (2015) Alpha-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth Human Molecular Genetics. Oct 13. pii: ddv428. [Epub ahead of print]

Green, J. A., C. L. Schmid, E. Bley, P. C. Monsma, A. Brown, L. M. Bohn, and K. Mykytyn. (2015) Recruitment of beta-arrestin into Neuronal Cilia Modulates Somatostatin Receptor Subtype 3 Ciliary Localization. Mol Cell Biol. Epub Oct. 26.

Martin BL, Gallagher TL, Rastogi N, Davis JP, Beattie CE, Amacher SL, Janssen PM. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae. J Appl Physiol 2015 Oct 1;119(7):799-806. doi: 10.1152/japplphysiol.00447.2015. Epub 2015 Aug 6. PubMed PMID: 26251513; PubMed Central PMCID: PMC4593813.

Welker, A. S., Jaros, B. D., Puduvalli, V., Kaur, B., and Beattie, C. E. (2015) Standardized orthotopic xenografts in zebrafish reveal glioma cell line specific characteristics and tumor cell heterogeneity. Disease Models and Mechanisms, in press.

Contact the Department of Neuroscience

The Ohio State University Wexner Medical Center
Department of Neuroscience

333 W. 10th Ave. Columbus, OH 43210

Melissa Stenger
Administrator
614-688-5501
Melissa.Stenger@osumc.edu

Share this Page